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Periodic boundary layer near a two-dimensional 
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The time-mean characteristics of the laminar boundary layer near a two- 
dimensional stagnation point, when the velocity of the oncoming flow relative 
to the body oscillates are investigated analytically. First, when the amplitude of 
the oscillating velocity is small compared with the oncoming flow velocity, a 
series expansion is made and the obtained equations are solved numerically. 
The equations are also solved approximately in the extreme cases when the 
frequency is low and high. The obtained approximate solutions are compared 
with the numerical solutions in terms of skin friction. Next, when the frequency 
is high, the finite-velocity-amplitude case is treated. Time-mean velocity profiles 
and skin friction are obtained and compared with the small-amplitude case. 

1. Introduction 
Most theoretical investigations concerned with the periodic boundary layers 

have focused attention on instantaneous behaviour (e.g. fluctuating skin fric- 
tion). Lighthill (1954) studied the effect of a fluctuating, oncoming stream on the 
skin friction and heat transfer of a two-dimensional body. Hori (1961) studied 
flow around an oscillating cylinder for low frequency. Mori & Tokuda (1966) 
made a theoretical and experimental study of heat transfer from an oscillating 
cylinder. These investigations considered small amplitude oscillation in which the 
oscillating velocity amplitude is small compared with the oncoming stream 
velocity. Lin (1957) considered the effect of finite-amplitude oscillation on a flow 
field. 

As to the time-mean flow field, the only reliable account we have is of the case 
in which the circular cylinder oscillates in afluid at rest, first given by Schlichting 
(1932). In the case when the oncoming stream is present, Lin (1957) made the 
instructive, qualitative suggestion that the pressure gradient along a body 
surface plays an important role in the effect of high-frequency oscillation on the 
time-mean flow field. But we have no quantitative knowledge of the time-mean 
flow field itself (e.g. of the velocity profile or skin friction). 

The principal aim of the present paper is to investigate the time-mean charac- 
teristics of the periodic boundary layer near a two-dimensional stagnation point. 
The particular case of two-dimensional flow about a fixed body, when the 
fluctuations in the external flow are produced by fluctuations of the oncoming 
stream, is considered in the following analysis. In  an incompressible flow, the 
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analysis applies also to the case when the fluctuations in relative velocity arise 
from oscillations of the body parallel to the steady oncoming stream. In general, 
periodic unsteadiness affects the viscous fluid in the manner of constant thickness 
(penetration depth). Therefore, when the oscillations are superimposed to the 
steady stream, flow similarity can no longer be maintained except when the 
steady boundary-layer thickness is constant. This constant thickness character 
of stagnation point makes it possible to reduce the unsteady boundary-layer 
equation to an ordinary differential equation. 

2. Small-velocity amplitude case 
The boundary-layer equations for two-dimensional unsteady laminar flow of 

(1) 
an incompressible fluid are au av 

ax ay 
-+-- = 0 

au au au au au a2u 
-+u-+w-=-+U-+v--, 
at ax ay at ax ay2 

u = w = 0 at y = 0,  u = U(x ,  t )  as y-+ co, 

where x and y are distances parallel and normal to the surface, u and w are the 
corresponding velocity components, t the time, U the velocity at  the edge of the 
boundary layer, and v the kinematic viscosity. Near a front stagnation point, 
the velocity U ( x ,  t )  is assumed to be 

(3) 
where A is constant and w is frequency. 

U ( x ,  t )  = Ax( 1 + e e i w t ) ,  

When E is small compared with unity, u and w may be expanded as 

u(x> y ,  t ,  = u0(x7 y) + EU1(x> y7 t ,  + E2U2(X,  y, t ,  + f a .  $1 
w(x7 y, t ,  = wO(x ,  y )  + Ew1(x7 y, t ,  + eZw2(X, y ,  t ,  + f * * .  J (4) 

Substituting the (4) into (1) and (a) ,  and equating the same order of e, sets of 
equations are obtained. The zeroth-order equations are 

au, avo 
ax ay 
-+- = 0, 

uo = wo = 0 a t  y = 0,  uo = Ax as y-too. 

The solutions are the following well-known functions : 

uo = Axf'(r), wo = - & A M 7 ) ,  7 = Y & W ,  ( 6 )  

where prime denotes differentiation with respect to 7. The first-order equations 
are aq+> av = 0, 

ax ay 
awl au, au au au a2u 

O ax ax O a9 ay  aY2 
=+u -+u -'+w L + w  -O = (iw+2A)Axe2'"t+v-1, ( 7 6 )  
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u1 = Axg’(q)eiut, v1 = -J (Av)g(y)e i” t .  (8) 

By analogy with (6), solutions are assumed to be 

Substitutions of (8) into (7) yield the following ordinary differential equation: 

I iW i w  
g”’ + fg’ - 2f ’g’ +f”g - A - 9’ = - A - - 2, 

(9) 
I g = g ’ = O  at y = O ,  g ’ = 1  as y+m: 

Since (9) contains the frequency parameter cr = @/A,  approximate solutions have 
been sought in the extreme cases when the frequency parameter is small and 
large. When cr is smaller than unity, the following power series solution is obtained 
(Hori 1961): 

When cr is larger than unity, Mori & Tokuda have obtained the following solution 
by WKB method: 

g(7) = g o ( r )  + imb) + (id2s2(r) + *. * * (10) 

Here, numerical solutions are obtained for given values of c and compared with 
the former approximate solutions in terms of skin friction. From (10) and (ll),  
the following expressions are obtained: 

= 8 + 0~225.31~ - 0-020(i(r)2 + . . . (small IT), ( 1 2 4  
TILO 

where 

1-623 0.875 
= 0*8113J(i1~) + T - - + ... (large (T), J(w) iIT 

T w 0 = P ( 2 )  2/=0 , ...t=P(%) ?4=0 , 

,M being the viscosity. The amplitude and phase angle of fluctuating skin friction of 
order e obtained numerically are shown in figure 1 by solid lines, as well as the 
approximate results (12a) and (12b), which are shown by dotted lines. It may be 
said that the agreement is fairly good. The asymptotic values obtained by 
Lighthill are also shown by broken lines, and we can see that the asymptotic 
phase advance 45’ may be attained at very large value of c. 

The second-order equations are 

u 2 = v 2 =  0 at y =  0, u 2 =  0 as y+m. 
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Solutions may be represented as 

u2 = Ax(G’(7) + G ~ ( T J I )  eziwt}, w2 = - , /(Av) (G(TJI) + G,(q) e2i(i’t}. ( l i )  

Then the time-independent function C satisfies the following ordinary differential 
equation 

(15) G”+fG”- 2f’G’+f”G = ~(g:2+g;2-grg~-gig~- 11, 

G = G ‘ = O  at q = O ,  G‘=O as y-tco, 

- 10‘ 

1 -  
-_--_ 

I 1 I 50’ 
O O  5 10 15 20 

0- 

FIGURE 1. Amplitude and phase angle of fluctuating component of skin friction. 

G 

-0.02 1 I I I I I I I 
FIGURE 2 .  Plot of the function G‘. 

where subscript r and i respectively denote real and imaginary part of each 
function. Numerical solutions are obtained using the solutions of (9) in the right- 
hand side of (15). Some typical functions G’,  which are proportional to the time- 
mean deviation from the steady velocity profile caused by flow oscillation, a,re 
shown in figure 2. It can be seen that the fluid near a wall is accelerated, and 
that the magnitude of this acceleration is larger for smaller values of v. 

For comparison, and so as to see the characteristics in analytical form, 
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approximate solutions are also obtained in the following manner. For small a, 
the power series solution may be assumed to be 

G(7)  = Go(7) + aG,(v) + a2G2(7) + * * a  - (16) 

Substituting (10) and (16) into (15), and equating the same order of u, the follow- 
ing equations are obtained: 

G: + f G i  - 2 f G ;  +f”Go = f{gk2 - go% - 13, 

G;“ + fC; - 2f ’G i + f G l  = 0, ] (17) 
Gr+fGi-  2f’G‘+fHGz = +{g;2- 2gkg~+g~g2-glg;+gOg~}, 
Go = Gi = GI = G ;  = G,  = Gi = 0 at 7 = 0, 

G ; = G ; = G i = O  as ~ + o o .  

Here Go is the quasi-steady-state solution, Gl is identically zero and G, is obtained 
numerically , giving 

Go = &( - f+vf’+77) ,  Gl = 0, G i ( O )  = - 0.004. 

For large u, substitution of (1 1) into the right-hand side of (15) yields 

G“‘ + fG” - 2f’G +f”G = f” 
2u&w 

+ *.. +{- & 4 2 a )  - 1 -+vf+ ...} cosgiesr 

+ {&/( 2a) - & + . . .} sin ti etr + (9 + . . .) e2cr. (18) 

Then the solution in the following form may be assumed: 

G(7) = Gb(v) + G,(v) cos Ei etr + G,(y) sin&. etr + Ge(v) egr. (19) 

Since the terms in (1 9) are linearly independent, equations for Gb, G,, G, and Ge are 
obtained after substituting (19) into (18). Solutions of these equations are 

It is readily understood that the following conditions are to be attached to Gb 
so as to satisfy the boundary conditions, 

Therefore, expressing 

the following equations are obtained for each order of u: 

31 
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Numerical calculations give 

GiO(0) = 0,608, GSI(0) = 1.449. 

These approximate sclutions give the following time-mean skin friction: 

T(v )  = 

- - 

where 

- 
_ -  rw - 1+s2T(g) ,  
Two 

& - 0 . 0 0 3 3 ~ ~  + . . . 
0.2868 0.4932 0.8313 

(small B ) ,  

+-+- + . . . (large cr), Jg u c r J ~  

Numerical results are shown in figure 3 by a solid line, and the approximate 
results (20a) and (20b)  by a dottedline. Many more terms in (2Ob) will be required 
for better agreement. The asymptotic value for very large B, first term only in 

I I I 

0.2 - -. 

rtT 

- - 

I I I 

0 5 10 15 20 
0.0 ' 

0- 

FIGURE 3. Plot of T with frequency parameter v,  

(20b), is also shown by a broken line. It can be seen that the first term in (20b) 
results from the acoustic streaming near the wall in the absence of an oncoming 
stream. Therefore the difference between the solid line and the broken line gives 
roughly the contribution of the oncoming stream. In this analysis, acoustic 
streaming outside the boundary layer is neglected, and it is discussed only 
briefly in $3.  

3. Finite-velocity amplitude case 
The basic equations in the boundary layer are identical with those of $2, 

i.e. (1) and ( 2 ) .  The main-stream velocity outside the boundary layer is given by 
(3) without retriction on 8. 
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Following Lin, the velocity in the boundary layer may be separated into two 
components (time-mean and fluctuating): 

( 2 1 )  I 4x9  y ,  t )  = U(x, Y )  + U t ( X >  Y, t )  
v(x, y, t )  = w, y )  + V t ( X ,  y ,  t ) ,  

- u, = v, = 0) 

where the bar over a symbol denotes time-mean quantities. Substituting (21 )  
into ( 1 )  and (2), and taking its time average, the following time-mean equations 

az az -+- = 0, 
ax ay 

are obtained: 

S = Z = O  a t  y = O ,  U = A x  as y+m. 

Subtracting (22a) and ( 2 2 b )  from the full equations (1) and ( 2 )  respectively, the 
following fluctuating equations are obtained: 

au, av, -+- = 0, 
ax ay 

au, -aU, a;ii au, au -au au au, au, 
-+u-+u,-+u --ut--t+vt+w -+v --vt- 
at ax ax ax ax ay  t a y  ay  ay 

ut = vt = 0 a t  u = 0, ut = eAxeiut as y - t m .  

I n  the case of high frequency, the following assumptions are made: 

Then (236)  is simplified t o  

The solutions of (23u) and (24) obtained by Lin were 

u, = € A x  { 1 - exp ( - .J(iw/v) y ) }  eiwt, 

v, = - eAJ(v/ iw)  { J ( i w / v )  y - 1 + exp ( - J( iw/v)  y))eiwt. 

The additional terms in (22b)  can be estimated as 

€2 
= - A2xP, ($1 ) 

- 2  

where So = J ( 2 v / w )  is the so-called penetration depth or viscous wave thickness. 
31-2 
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The time-mean flow equations are now rewritten as 

au av 
ax ay -+- = 0, 

-au au a25 w-+c-  = A2x{l++B2P,}+l+-. 
ax ay aY2 

The following transformations are made: 

Then a non-linear ordinary differential equation including two parameters, 
E and IJ, is obtained: 

F"'+FF" -F'Z+ 1 +gs"l(.J(+IJ)?/l) = 0, (29) 

F = F ' = O  at y = O ,  F f = l  as ?~-+co. 

Solutions are obtained numerically for given values of B and CT. Initial values of 
these solutions P"(0) are shown in table 1, as well as per cent differences referred 

5 = 10 0- = 20 6 = 2.0 
h r  

A 
\ /  

A 
i 

& P"( 0) € P"(0) U E""(0) 

0.5 1.2678 0.5 1.2570 3 2.1403 

1.0 1.4248 1.0 1-3301 5 1-9901 

1-5 1.5482 1.5 1.4518 7 1.8915 

(0.06 %) (0.01 %) (4.81 %, 

(0.20 %) (0.02 %I (2-14 %) 

(0.33 Yo) (0.02 %) (1.06 %) 

(0.40 %) ( - 0.01 Yo) (0.40 %) 

(0.11 Yo) ( - 0.02 yo) (0.15 %) 

( - 0.80 Yo) ( - 0.07 yo) (0.06 %) 

2.0 1.7915 2.0 1.6217 10 1.7915 

3.0 2.4767 3.0 2.1038 13 1.7228 

4.0 3.4119 4.0 2.7706 15 1.6875 

TABLE 1. Initial values of function P"(7) at various values of E and u. (Differences from 
the extrapolated values of small amplitude case shown in parentheses) 

to the extrapolated values of the small amplitude case. From this it is anticipated 
that small amplitude solutions give the well-approximated values for large IJ, 

even if the amplitude grows finite. Figures 4 and 5 show some typical velocity 
profiles F in solid lines, and additional pressure gradient PI in broken lines. It can 
be seen that, when v is large, influences of additional pressure gradient are 
restricted to the immediate neighbourhood of the wall and neutralized by intense 
viscous force. As IJ becomes smaller, the additional pressure gradient influences 
the intermediate region of weak viscous force and accelerates the fluid there. 
This seems a reasonable explanation of the physical dependency of time-mean 
skin friction on IJ. 
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Finally, we consider the condition of negligible secondary flow velocity outside 
the boundary layer. Secondary flow far from the wall may be expected to have 
an appreciable effect when the velocity amplitude grows finite. A rough criterion - 

FIGURE 

FIGURE 

4. 

5.  

n.Q L \ / /z  1 

-0.4 1 I I I I I I I 

Time-mean velocity profile F' and additional pressure gradient PI when g = 10.0. 

- 

E =2*0 
- 

- 

- 

- 0.4 I 1 I I 1 1 1 

Time-mean velocity profile P' and additional pressure gradient PI when & = 2.0. 

we can use is derived from the secondary flow without the steady oncoming 
stream. According to Schlichting, it is of the order of (s2A2x)/w,  and we can see that 
this becomes negligible in the time-mean pressure gradient and outer boundary 
condition when the following inequality is added to the above-mentioned 
inequalities (24a) : 

t7 9 €2. (246) 
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